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Abstract

A framework for automatic image colorization, the art of adding color to
a monochrome image or movie, is presented in this paper. The approach is
based on considering the geometry and structure of the monochrome lumi-
nance input, given by its gradient information, as representing the geometry
and structure of the whole colored version. The color is then obtained by
solving a partial differential equation that propagates a few color scribbles
provided by the user or by side information, while considering the gradi-
ent information brought in by the monochrome data. This way, the color
is inpainted, constrained both by the monochrome image geometry and the
provided color samples. We present the underlying framework and examples
for still images and movies.

1 Introduction

As explained in [14],1 colorizationis a term introduced by Wilson Markle in 1970
to describe the computer assisted process he invented for adding color to black
and white movies [6]. The term is generically used now to describe the process of
adding color to monochrome still images and movies. The value of color in art, and
colorization in particular, is sometimes controversial, and some of the relevance of
this for image processing is addressed and commented in [7, 14]. Colorization is

∗This work was supported by the Office of Naval Research and the National Science Foundation.
1This work motivated us to use the concepts of inpainting, as detailed below, in the interesting

challenge of colorization.



in general an active and challenging area of research with a lot of interest in the
image editing community. In addition to the original (controversial) intensions of
coloring old movies, colorization has applications such as color changing (editing)
and compression. The latter comes from the fact that as shown in this paper, with
the luminance information and just some samples of the color (much less than the
ordinary sub-sampling in common compression schemes), the color components of
the data can be faithfully recovered. This has implications also in wireless image
transmission, where lost image blocks can be recovered from the available channels
[19].

Classically, colorization is done by first segmenting the image and then assign-
ing colors to each segment. This is not only a very time consuming process, but as
shown in [14], can lead to significant errors, particularly in fuzzy boundaries. For
movies, colorization also requires the tracking of these regions, adding computa-
tional complexity and the typical difficulties when tracking non-rigid objects.

Our framework is motivated by two main bodies of work, one dealing with the
geometry of color images and one dealing with image inpainting, the art of modi-
fying an image in a non-detectable work. Caselleset al. [7] and Chung and Sapiro
[8] (see also [22]) have shown that the (scalar) luminance channel faithfully rep-
resents the geometry of the whole (vectorial) color image. This geometry is given
by the gradient and the level-lines, following the mathematical morphology school.
Moreover, Kimmel [12] proposed to align the channel gradients as a way of denois-
ing color images, and showed how this arises naturally from simple assumptions.
This body of work brings us to the first component of our proposed technique,
to consider the gradient of each color channel to be given (or hinted) by the gra-
dient of the given monochrome data.2 The second component of our framework
comes from inpainting [3]. In addition to having the monochrome (luminance)
channel, the user provides a few strokes of color, that need to be propagated to
the whole color channels, clearly a task of inpainting. Moreover, since from the
concepts described above, information on the gradients is also available (from the
monochrome channel), this brings us to the inpainting technique described in [1]
(see also [2]), where we have interpreted inpainting as recovering an image from
its gradients, these ones obtained via elastica-type interpolation from the available
data. Recovering an image from its gradients is of course a very old subject in im-
age processing and was studied for example in [11] for image denoising (see also
[15]) and in [18] for a number of very interesting image editing tasks. Combining
both concepts we then obtain that colorizing reduces to finding images (the color
channels) provided their gradients (which are derived from the monochrome data)
and constrained to color strokes provided by the user. Below we present partial

2This monochrome image becomes the luminance of the reconstructed color data.



differential equations for doing this, which in its simplest form, is just a Poisson
equation with Dirichlet boundary conditions. This puts the problem of colorizing
in the popular framework of solving image processing problems via partial differ-
ential equations [13, 17, 21].

1.1 Additional comments on colorization prior art

Before concluding this introduction and going into the technical details, we should
point out some relevant works in the literature. For more details and in particular
description of some commercial products which heavily rely on user intervention,
see [14].

Markle and Hunt [16] original work represents the trend mentioned above of
segmenting, tracking, and color assignment. Welshet al. [24] present a semi-
automatic technique for colorizing a grayscale image by transferring color from
reference data. The idea is to transfer color from neighborhoods in the reference
image that match the luminance in the target data. There is then an underlying
assumption that different colored regions give rise to distinct luminance, and their
approach works properly only when this is not violated, otherwise requiring sig-
nificant user intervention. The results reported by the authors are quite impressive,
although the technique intrinsically depends on the user to find proper reference
data. More details on the problems with this work are reported in [14], which
as said above, inspired our own work. Levinal., as done in this work, assume
that in addition to the monochrome data, the user scribes some colors in the im-
age. First, in contrast with the work in [24], this gives much more control to the
user, both in the selection of the desired colors (without having to search in image
databases), and in the correction of possible errors of the automatic algorithm. This
last step is very important, since we are “inventing” information (the color), and
then it is expected that the algorithm will make decisions that the user would like
to change. Therefore, the proposed technique has to intrinsically allow for that. As
in our approach, in [14] this is easily done by adding strokes (color constraints).
In [14], the color is added following the simple premise that neighboring pixels
having similar intensities in the monochrome data should have similar colors in
the chroma channels. This premise is formalized in our work, following [7, 8],
by using the gradients from the monochrome provided image, thereby transmitting
the geometry among the channels. This premise is materialized in [14] by a dis-
crete variational formulation that penalizes for the difference between a pixel color
value and the weighted average of the colors in its neighborhood.3 The weights
are provided by the monochrome data. Intrinsic to their approach is the concept

3This is a discrete analogue of classical penalty functions of the types used in color image pro-
cessing, e.g., [23].



of neighborhood, which forces in the case of movies to compute optical flow. We
avoid this by using the spatial and temporal gradient. We therefore proposes a sim-
pler algorithm, which uses the full gradient information as suggested by the color
image geometry works in [7, 8] and the inpainting and editing works from image
gradient in [1, 2, 11, 18].

2 Inpainting colors from gradients and boundary condi-
tions

We start with the description of the proposed algorithm for still images. Let
Y (x, y) : Ω → IR+ be the given monochromatic image defined on the region
Ω. We will work on theY CbCr color space (other color spaces could be used as
well), and the given monochromatic image becomes the luminanceY . The goal
is to computeCb(x, y) : Ω → IR+ andCr(x, y) : Ω → IR+. We assume that
colors are given in a regionΩc in Ω such that|Ωc| << |Ω| (otherwise, simple
interpolation techniques would be sufficient). This information is provided by the
user via color strokes in editing type of applications, or automatically obtained for
compression (selected compressed regions) or wireless (non lost and transmitted
blocks) applications. The goal is from the knowledge ofY in Ω andCb, Cr in Ωc

to inpaint the color information (Cb, Cr) into the rest ofΩ.
Following the description in the introduction,Cb (and similarlyCr) is recon-

structed from the following minimization problem:

min
Cb

∫
Ω

ρ(‖ ∇Y −∇Cb ‖)dΩ, (1)

with boundary conditions onΩc, ∇ :=
(

∂
∂x , ∂

∂y

)
is the gradient operator, and

ρ(·) : IR → IR. The basic idea is to force the gradient (and therefore the geometry)
of Cb to be as the geometry of the given monochromatic imageY while preserving
the given values ofCb at Ωc. Note that although here we consider these given
values as hard constraints, they can also be easily included in the above variational
formulation in the form of soft constraints. This can be particularly useful for
compression and wireless applications, where the given data can be noisy, as well
as for editing applications where the user only provides color hints instead of color
constraints. For ease of the presentation, we continue with the assumption of hard
constraints. In [5] we discussed a number of robust selections forρ in the case of
image denoising, while in [1] we used theL1 norm,ρ(·) = | · |, following the work
on Total Variation [20]. Of course, the most popular, though not robust, selection is
theL2 normρ(·) = ·2, which leads via simple calculus of variation to the following



necessary condition for the minimizer in (1):

∆Cb = ∆Y, (2)

with corresponding boundary conditions onΩc and∆ being the Laplace opera-

tor given by∆ :=
(

∂2

∂x2 + ∂2

∂y2

)
. This is the well known Poisson equation with

Dirichlet boundary conditions.
Equations (1) and (2) can be solved very efficiently by a number of well devel-

opedPoisson solvers, e.g., see [9], making our proposed algorithm very simple and
computationally efficient. Note that in contrast with the work in [14], our formula-
tion is continuous, and the vast available literature on numerical implementations
of these equations accurately handles their efficient solution.

To conclude the presentation, we need to describe how to address the coloriza-
tion of movies. Although optical flow can be incorporated as in [14], it would be
nice to avoid its explicit computation. We could implicitly introduce the concept of
motion in the above variational formulation, though we opt for a simpler formula-
tion. Following the color constancy constraint often assumed in optical flow, and if
the gradient fields and motion vectors of all the movie channels are the same, then
of course we can consider∂Y

∂t = ∂Cb
∂t = ∂Cr

∂t , wheret is the time coordinate in the
movie. Therefore, equations (1) and (2) are still valid constraints for the movie case
(Ω is now a region in(x, y, t) andΩc are 2D spatial strokes at selected frames), as
long as we consider three dimensional gradients and Laplace operators given by

∇ :=
(

∂
∂x , ∂

∂y , ∂
∂t

)
, ∆ :=

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂t2

)
, respectively. Anisotropy between

the spatial and temporal derivatives can be easily added to these formulations as
well.

2.1 Comments on different variational formulations

Equations (1) and (2) represent just one particular realization of our proposed
framework. For example (see also comments in the concluding remarks section),
we could constraint the color normalized gradients to follow the luminance nor-
malized gradient. In this case, the variational formulation becomes

min
Cb

∫
Ω

ρ

(
∇Y

‖ ∇Y ‖
· ∇Cb− ‖ ∇Cb ‖

)
dΩ, (3)

with corresponding boundary conditions. From calculus of variations, the corre-
sponding Euler-Lagrange equation is (for anL2 norm)

div

(
∇Cb

‖ ∇Cb ‖

)
= div

(
∇Y

‖ ∇Y ‖

)
, (4)



which is once again solved using standard efficient numerical implementations [1,
2] (div stands for the divergence). The concepts above transmit to movies as with
equations (1) and (2).

3 Examples

In Figure 1 we present the first example. For comparison, we use color from the
original image to provide the color strokes on the monochromatic input. The orig-
inal image is then provided first, followed by the monochromatic image with the
color strokes, and followed by the result of our colorization algorithm. Note that
the colorized image is visually almost identical to the original image. In Figure
2 we present a number of additional examples for still images. On the first row
we show the input monochromatic image with the used color strokes overlayed on
them. The result of our algorithm is provided in the second row.4 Note that as
in image inpainting, the original image is not available, and therefore every “rea-
sonable” and visually pleasant result should be considered acceptable. A movie
example is presented in Figure 3 for a few colorized frames from the movie Shrek
2. The first column shows to original frames, while the colorized ones are pre-
sented on the right. These are obtained by a few random strokes on each frame,
using colors from the original movie.

4 Concluding remarks

A simple colorization framework was introduced in this papers. The technique is
based on combining concepts from image inpainting with studies on the geometry
of color images. Particular realizations of this framework were described, while
others are certainly possible. For example, we could use the gradients and optical
flow of the monochromatic image and video to explicitly provide the inpainting
direction needed in the algorithm introduced in [3]. We could also follow ideas
put forward in [4] and colorize in a decomposition domain, using for example
ideas from [10] to colorize the texture component, considering color as the “style.”
More interesting probably is to understand what kind of information is needed in
the chroma channels for error controlled colorization. This not only will help in
editing images, directing the user to the crucial regions to provide the strokes, but
also in the use of colorization for compression and wireless image transmission.
These topics will be the subject of future research and will be reported elsewhere.

4The images are obtained from the Berkeley database.
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Figure1: Still image colorization. The original image is presented first, followed by the
monochromatic image with color strokes with colors from the original data, and followed
by the colorized image automatically obtained from our technique, which is visually almost
identical to the original data. (This is a color figure.)



Figure2: Still images colorization. The monochromatic images with the color strokes
are presented in the first row, followed in the second row by the results of our colorization
technique. When the color has drifted too much, the user can easily add strokes to repair
this. (This is a color figure.)



Figure3: Movie colorization. Colorized results are on the second column and original
frames on the first one (never available to the editor/receiver of course). (This is a color
figure.)


